The multiplication operator from mixed-norm to $n$-th weighted-type spaces on the unit disk

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Multiplication Operator from F p , q , s Spaces to n th Weighted - Type Spaces on the Unit Disk

Let H D denote the space of all analytic functions in the open unit disc D of the finitecomplex plane C, ∂D the boundary of D, N0 the set of all nonnegative integers and N the set of all positive integers. Let μ z be a positive continuous function on D weight such that μ z μ |z| and n ∈ N0. The nth weighted-type spaces on the unit disk D, denoted by W n μ D which were introduced in 1 , consist ...

متن کامل

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

Generalized Composition Operator from Bloch–type Spaces to Mixed–norm Space on the Unit Ball

Let H(B) be the space of all holomorphic functions on the unit ball B in CN , and S(B) the collection of all holomorphic self-maps of B . Let φ ∈ S(B) and g ∈ H(B) with g(0) = 0 , the generalized composition operator is defined by C φ ( f )(z) = ∫ 1 0 R f (φ(tz))g(tz) dt t , Here, we characterize the boundedness and compactness of the generalized composition operator acting from Bloch-type spac...

متن کامل

On an Integral-Type Operator from Zygmund-Type Spaces to Mixed-Norm Spaces on the Unit Ball

and Applied Analysis 3 2. Auxiliary Results In this section, we quote several lemmas which are used in the proofs of the main results. The first lemma was proved in 2 . Lemma 2.1. Assume that φ is a holomorphic self-map of , g ∈ H , and g 0 0. Then, for every f ∈ H it holds [ P g φ ( f )] z f ( φ z ) g z . 2.1 The next Schwartz-type characterization of compactness 28 is proved in a standard way...

متن کامل

Products of Radial Derivative and Multiplication Operator between Mixed Norm Spaces and Zygmund–type Spaces on the Unit Ball

In this paper, we obtain some characterizations of the boundedness and compactness of the products of the radial derivative and multiplication operator RMu between mixed norm spaces H(p, q, φ) and Zygmund-type spaces on the unit ball. Mathematics subject classification (2010): 47B38, 47G10, 32A10, 32A18.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2012

ISSN: 1331-4343

DOI: 10.7153/mia-15-38